DETOXYFI

JOCAL ACCESSIONS TO CLEAN

VATER POLITANTS FOR MALL OF US AS POLITANTS OF US AS PETER PAYS OF DEPORT OF US AS PETER PAYS OF US AS PET

VRITER @KATESOBKO

imental group revealed several s throughout North Jersey - Lynd- condition t, Elmwood Park, Garfield, Walon and Bloomfield - had harmful limit for t tants in their water supply.

elines for contaminants, Environal Working Group reported Lynd-Garfield and Wallington tested

higher than the group's suggested Elmwood Park's level was 83 ppb. health guideline, which could put residents at a higher risk for cancer, develreport released recently by an en- opmental issues in children, problems y and other serious health

Elmw

Environmental Working Group suggesting 8 parts per billion would be

Tests that look for more than 80 contaminants in drinking water are conducted regularly by the U.S. Environ-

ane in water is 80 parts per billion, with the testing and violation data and either verified the accuracy of the data or pro-

Basic Human Right

CAMP LEJEUNE WATER CONTAMINATION

The report named

Water pollution touching dangerous levels in city

DOZENS SICKENED IN NEW YORK I EGIONNAIDES! OUTROPAK

IES OF IND ACCESS Trust Equipment of the bomb

Alarmed specialists say Durban's water security is not so much threatened by scarcity as by upstream pollution - much of it emanating from Pietermartizburg's Msundusi River Fred Kocott and Siboniso Mngadi report.

Our technology has been developed at MIT over 10+ years of research

Step 1

Step 2

Result

Performance classification	Log ₁₀ re	Interpretation (with correct & consistent use)			
	Bacteria				
***	≥4	≥5	≥4	Comprehensive protection	
**	≥2	≥3	≥2		
*	Meets at leas	Targeted protection			
	Fails to me	Little or no protection			

Waste Wood Processing

 Vertically integrated with Winwood Sawmill in Massachusetts

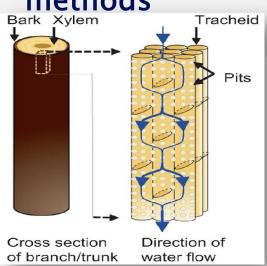
Chemical Treatment

 Design and prototyping partner (RPM Tech) transforms filters to maximize filtration and flow rate

3rd party verified

WHO quality filtration against disease causing microbes

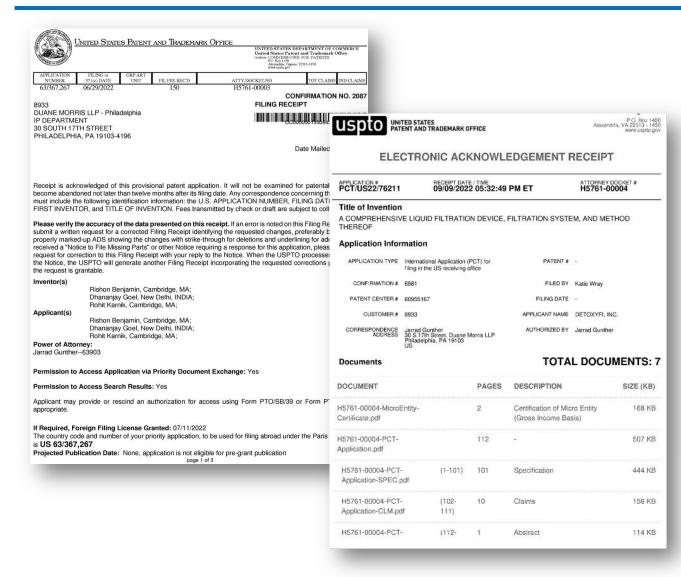
DetoXyFi


Our patented, one-of-a-kind water filtration technology inspired by nature.

 10 years of lab and field testing in India, Uganda, Madagascar, and the US with high social acceptance*

Human-centered design

• 60% cheaper, up to 10x more effective than alternative


methods

Our devices are patent-pending and field tested across 5 countries

Peer Reviewed and Field Tested

nature communications

Explore content > About the journal > Publish with us >

nature > nature communications > articles > article

Article Open Access Published: 25 March 2021

Engineering and characterization of gymnosperm sapwood toward enabling the design of water filtration devices

<u>Krithika Ramchander</u> ⊆, <u>Megha Hegde</u>, <u>Anish Paul Antony</u>, <u>Luda Wang</u>, <u>Kendra Leith</u>, <u>Amy Smith</u> & Rohit Karnik ⊆

Nature Communications 12, Article number: 1871 (2021) | Cite this article 9058 Accesses | 10 Citations | 175 Altmetric | Metrics

Abstract

Naturally-occurring membranes in the xylem tissue of gymnosperm sapwood enable its use as an abundantly-available material to construct filters, with potential to facilitate access to safe drinking water in resource-constrained settings. However, the material's behavior as a filter is poorly understood, and challenges such as short shelf life have not been addressed. Here, we characterize the operational attributes of xylem filters and show that the material exhibits a highly non-linear dependence of flow resistance on thickness upon drying, and a tendency for self-blocking. We develop guidelines for the design and fabrication of xylem

FOUNTAIN VALLEY ANALYTICAL LABORATORY, INC.

1413 Old Taneytown Rd. Westminster, MD (410) 848-1014 (410) 876-4554

REPORT OF ANALYSIS

Laboratory ID #: 155164 Account #: 7769 Reference: Bacteria Rejection Testing Client: DetoXvFi Location: 12 E Jarrettsville Road Requested By: Rishon Benjamin Forest Hill, MD 21050 Source: E. Coli Standard Date/ Time Collected: 10/11/2022 1248 Site: Post-Test Negative Date/Time Rec'd: 10/11/2022 1526 Treatment: N/A Chlorine ppm: Free: ND Total: ND NT pH:

PARAMETERS	RESULTS	UNITS	REFEREN	CE METHOD	DATE/TIME/ANALYST
Bacteria, E. coli, MPN	<1.0	MPN/ 100	ml <1.0	SM20 9223B	10/12/2022 / 1200 / CRS

Well#:

N/A

NOTES:

Collected By:

- MPN/ 100 ml = Most Probable Number [of viable bacteria] per 100 ml of sample.
- 2 Results less than or within the reference range are considered satisfactory and within potable water limits at the time of sampling.
- 3 ND = None Detected; N/A: Not Applicable; NT = Not Tested
- 4 Sample collected by client, analyzed as received

S. Zakielarz

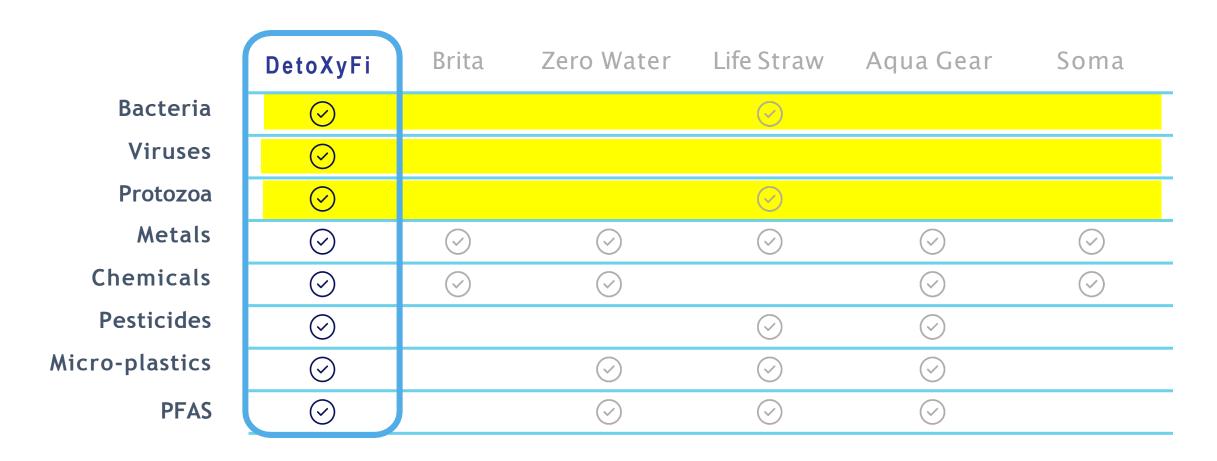
5 Chlorine level tested in lab

Reason for Test: Client's Information

FILTERS BUILT USING WASTE WOOD

PRODUCT FOR INFORMAL SETTLEMENTS

DISASTER RELIEF / OUTDOOR



Why DetoXyFi?

Shielding household water from chemical AND biological disease-causing agents

Why DetoXyFi?

Replacing current non eco-friendly, expensive, inaccessible alternatives

Bottled Water

Expensive to ship Occupy high volume Plastic waste

DetoXyFi filters are light-weight, scalable, and biodegradable

Boiling Water

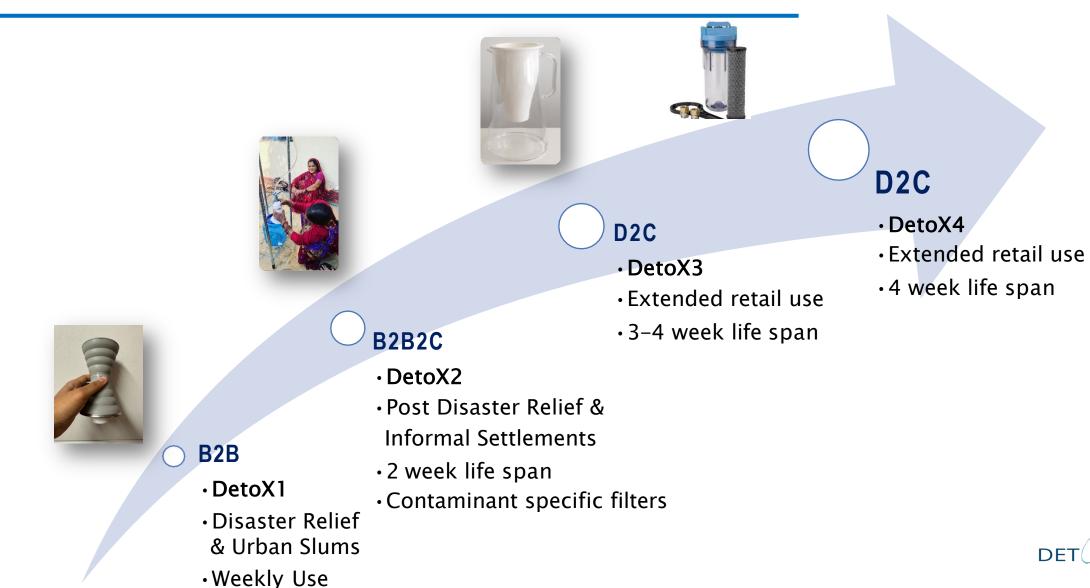
Requires external fuel High carbon footprint

DetoXyFi filters without any fuel inputs and uses 30x less wood

Chlorine tablets

Does not remove turbidity Leaves foul taste Harmful carcinogenic byproducts

DetoXyFi filters provide clean tasting water without any **byproducts**


Pump filters (e.g Sawyer)
Expensive to provide at scale (\$30)

DetoXyFi filters can be provided globally for <\$5

Our Vision: DetoXyFi for our collective futures Leveraging the wood-based filter technology as a platform to scale

Team

KHUSHI DESAI **HARVARD**

RISHON BENJAMIN HARVARD | MIT

DHANANJAY GOEL IIT DELHI | HARVARD | WHARTON

DR. ROHIT KARNIK IIT BOMBAY | UC BERKELEY | MIT

Harvard HealthLab Accelerators